Abstract

Facet engineering of anatase TiO2 by controlling the {001} exposure ratio has been the focus of numerous investigations to optimize photocatalytic activity. In particular, an introduction of fluoride ions during the crystal growth has been demonstrated to be very effective and decisive in realizing the facet exposure of the crystals. However, a key role of fluoride ions in stabilizing {001} exposure and improving subsequent photocatalytic activity of anatase TiO2 remains unclear up to date. Herein, a controlled thickness of anatase TiO2 nanosheets has been realized by introducing different amounts of ethanol into a HF acid-assisted hydrothermal reaction. The thinnest nanosheets with a thickness of ∼2.9 nm were evaluated to have the highest H2 production rate of 41.04 mmol·h-1·g-1 under ultraviolet light irradiation, and the corresponding quantum efficiency was determined to be 41.6% (λ = 365 nm). Moreover, it is proved for the first time that fluoride ions are bonded with Ti vacancies on {001} facets, and such defects are crucial for stabilizing the ultrathin nanosheets and improving their electron-hole separation, therefore leading to a highly efficient photocatalytic activity. The findings offer an opportunity to engineer facets and functionality of anatase TiO2 by controlling surface defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.