Abstract

The exsolution of metallic nanoparticles (NPs) from perovskite oxides is a promising strategy for synthesizing supported catalysts. The associated segregation of A-site cations on the surface is challenging to investigate experimentally and is often detrimental to the catalytic performance. In this work, we found that during the in situ exsolution of Ni-Co bimetallic nanoparticles from Pr0.45Ba0.45Mn1–x(Co1/3 Ni2/3)xO3±δ, A-site cation enrichment occurred on the surface when x is 0.1; yet, the perovskite surface decomposed when x reached 0.2, forming a thin layer comprising various nanocrystalline oxides, which partially blocked the active sites of the exsolved Ni-Co particles. A hydration and carbonation reaction facilitated the conversion of nanocrystalline BaO species into large and highly crystallized BaCO3 particles. This enabled the exposure of more Ni-Co active sites and offered a chance to quantify that the decomposed surface layer accounts for ∼7.2 wt % of the total perovskite. Because of this unique feature, the surface-decomposed catalyst showed higher activity in the dry methane reforming reaction with better stability. Importantly, the regeneration feature was not hampered as the complete exsolution-dissolution recyclability of the catalyst remained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.