Abstract
(Ga, Mn)As dilute magnetic semiconductor (DMS) is very promising for future spintronic devices, however, the lower Curie temperature (Tc) limits the applications. Here, using first-principles calculation based on density functional theory, we investigate the effect of the surface dangling bonds (SDBs) on the magnetic properties of Mn-doped GaAs nanowires (NWs). The results show that As (Ga)-SDBs are equivalent to holes (electrons) doping, giving rise to the magnetic moments on the surfaces of GaAs NWs. Further in the Mn-doped GaAs NWs, the SDBs can effectively regulate the total magnetic moments, due to charge transfers between the Mn-3d orbitals and the residual SDBs, which is analyzed by a carrier modulation model. Most importantly, the As-SDBs can stabilize the ferromagnetic (FM) states and enhance the Tc in Mn-doped GaAs NWs because of their shallow acceptor level with lower energy compared with Mn-3d level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.