Abstract

Chromium-doped vanadium sesquioxide, (V 1− x Cr x ) 2O 3, displays two metal–insulator transitions with temperature for 0.005< x<0.0179. The high-temperature (∼300 K) transition occurs in a temperature range that is of interest for catalysis; the physics of the transition is also of fundamental interest. However, so far that transition has been observed only on cleaved samples. Due to the difficulty in obtaining doped single crystals for cleaving, alternate preparation methods are required. (V 0.985Cr 0.015) 2O 3 (0001) was prepared both by scraping with a diamond file and by ion bombardment followed by annealing in oxygen; the resulting surfaces were examined by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) for evidence of the high-temperature metal–insulator transition. Although resistance measurements across the transition temperature showed that a transition had taken place in the bulk, no changes were observed in photoemission spectra of scraped samples; they appeared insulating both above and below the transition. Annealed samples, on the other hand, displayed a clear increase in the density of states at E F, as well as changes in core-level XPS consistent with a metallic surface, as the temperature was lowered through the transition. Sharp (1×1) low energy electron diffraction (LEED) patterns were obtained from annealed surfaces, and Auger spectra showed no evidence of chromium segregation following annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.