Abstract

To learn more about liquid metal distillation as it might be applied to nuclear fuel recovery and reprocessing, liquid metal distillations involving the tin-zinc, cadmium-bismuth, and indium-zinc binary systems were conducted in an evacuated chamber. An x-ray fluorescence spectrometer provided a continuous chemical analysis of the distilling surface during each run. This information was used to evaluate the validity of various theories and assumptions concerning surface depletion, oxide contamination, and turbulence effects. The existence of a large surface depletion effect in nonturbulent metal distillations was proven. However, the level of turbulence necessary to eliminate concentration gradients was found to be much lower than that assumed by some designers of commercial equipment. The presence of surface oxides was often an important factor in determining the enrichment and rate of distillation. The Langmuir-Knudsen theory was shown to be unreliable when liquid diffusion or surface oxide resistances were significant. A more complete approach involving the principles of transport phenomena was developed. An analytical solution was derived for the nonturbulent case and was tested using the spectrometer data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.