Abstract

Abstract. The Himalaya mountain range is characterized by highly glacierized, complex, dynamic topography. The ablation area of Himalayan glaciers often features a highly heterogeneous debris mantle comprising ponds, steep and shallow slopes of various aspects, variable debris thickness, and exposed ice cliffs associated with differing ice ablation rates. Understanding the composition of the supraglacial debris cover is essential for a proper understanding of glacier hydrology and glacier-related hazards. Until recently, efforts to map debris-covered glaciers from remote sensing focused primarily on glacier extent rather than surface characteristics and relied on traditional whole-pixel image classification techniques. Spectral unmixing routines, rarely used for debris-covered glaciers, allow decomposition of a pixel into constituting materials, providing a more realistic representation of glacier surfaces. Here we use linear spectral unmixing of Landsat 8 Operational Land Imager (OLI) images (30 m) to obtain fractional abundance maps of the various supraglacial surfaces (debris material, clean ice, supraglacial ponds and vegetation) across the Himalaya around the year 2015. We focus on the debris-covered glacier extents as defined in the database of global distribution of supraglacial debris cover. The spectrally unmixed surfaces are subsequently classified to obtain maps of composition of debris-covered glaciers across sample regions. We test the unmixing approach in the Khumbu region of the central Himalaya, and we evaluate its performance for supraglacial ponds by comparison with independently mapped ponds from high-resolution Pléiades (2 m) and PlanetScope imagery (3 m) for sample glaciers in two other regions with differing topo-climatic conditions. Spectral unmixing applied over the entire Himalaya mountain range (a supraglacial debris cover area of 2254 km2) indicates that at the end of the ablation season, debris-covered glacier zones comprised 60.9 % light debris, 23.8 % dark debris, 5.6 % clean ice, 4.5 % supraglacial vegetation, 2.1 % supraglacial ponds, and small amounts of cloud cover (2 %), with 1.2 % unclassified areas. The spectral unmixing performed satisfactorily for the supraglacial pond and vegetation classes (an F score of ∼0.9 for both classes) and reasonably for the debris classes (F score of 0.7). Supraglacial ponds were more prevalent in the monsoon-influenced central-eastern Himalaya (up to 4 % of the debris-covered area) compared to the monsoon-dry transition zone (only 0.3 %) and in regions with lower glacier elevations. Climatic controls (higher average temperatures and more abundant precipitation), coupled with higher glacier thinning rates and lower average glacier velocities, further favour pond incidence and the development of supraglacial vegetation. With continued advances in satellite data and further method refinements, the approach presented here provides avenues towards achieving large-scale, repeated mapping of supraglacial features.

Highlights

  • High relief orogenic belts such as the Himalaya are characterized by glacierized, complex, dynamic topography and the presence of a continuous cover of rock debris across the lowest part of the ablation zone of glaciers (Kirkbride, 2011)

  • For the supraglacial ponds in the Khumbu domain, we defined the water threshold quantitatively based on comparison of the linear mixing models (LMMs)-derived pond areas against those derived from Pléiades for seven glaciers (Sect. 2.6), and we evaluated the sensitivity of the chosen water threshold

  • We estimated the spatial distribution of surface characteristics on debris-covered glaciers at the subpixel scale using 30 m fractional maps obtained from a spectral linear mixing model

Read more

Summary

Introduction

High relief orogenic belts such as the Himalaya are characterized by glacierized, complex, dynamic topography and the presence of a continuous cover of rock debris across the lowest part of the ablation zone of glaciers (Kirkbride, 2011). While ice ablation beneath debris cover of more than a few centimetres thick is strongly reduced (Østrem, 1959; Nicholson and Benn, 2006; Reid and Brock, 2010), ice cliffs and supraglacial ponds are local hot spots for glacier downwasting due to enhanced energy absorption at the surface of these features (Ragettli et al, 2016; Miles et al, 2016; Sakai et al, 2002; Buri et al, 2016; Steiner et al, 2015) Understanding their spatial distribution is essential for a proper assessment of glacier hydrology, notably to simulate glacierwide ablation rates and meltwater production. Understanding the fluctuations of these surface characteristics, in particular supraglacial vegetation, is important since vegetation expansion on debris-covered surfaces may indicate the transition from a debris-covered glacier to a rock glacier in a context of climate change (Shroder et al, 2000; Jones et al, 2019; Knight et al, 2019; Monnier and Kinnard, 2017; Kirkbride, 1989)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call