Abstract

Surface composition gradients of the signaling molecule, epidermal growth factor (EGF), have been prepared by an adaptation of the electrochemical gradient technique. EGF is covalently bound to the reactive component, 11-amino-l-undecanethiol (AUT), in a counterpropagating two-component gradient composed of AUT and poly(ethylene glycol) thiol (PEG) using carbodiimide coupling chemistry. Areas of the surface presenting –NH 2 termination react with succinimidyl esters of solvent-accessible acidic amino acids in EGF, while non-specific protein adsorption is resisted in the PEG regions. The maximum surface coverage of EGF prepared in this manner was determined by surface plasmon resonance reflectometry (SPR) on spatially uniform films to be 20% < Γ EGF < 70% depending on the concentration of the EGF derivatization solution. EGF retains its biological activity with this immobilization process, as verified by culturing human umbilical vein endothelial cell (HUVEC) on an EGF-terminated surface for 24 h. PEG shows good resistance to EGF physical adsorption as demonstrated by both SPR and X-ray photoelectron spectroscopy (XPS). The N / C ratio of EGF gradients, which is characteristic of EGF adsorption, because only the protein contains N, while both protein and PEG contain C, was spatially mapped with XPS. The gradient composition distributions are sigmoidal with lateral distance, with the position of the gradient transition region being readily controlled by adjusting the applied potential window. EGF gradients with variable quantitative surface coverage profiles were generated by varying EGF and AUT concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call