Abstract

Humic substances (HS) substantially affect heavy metal (M) adsorption on mineral surfaces. However, quantitative descriptions of ternary systems involving M, HS and mineral surfaces remain unclear. This study examines adsorption in a model ternary system including Eu(III), fulvic acid (FA) and silica, and describes the adsorption of Eu(III) and FA by combining a double-layer model (DLM) and the Stockholm humic model (SHM). SHM explains the binding of H+ and Eu3+ to FA and the DLM for FA and Eu(III) adsorption on silica. Experimental results showed that the presence of FA promotes Eu(III) adsorption at acidic pH values, but decreases it at basic pH values, which indicates the formation of ternary surface complexes. Modeling calculations have shown that two ternary surface complexes are required to describe the experimental results in which Eu3+ acts as a bridge between the surface site and FA. The present study suggests that the discrete-site approach to HS is a promising method for interpreting the adsorption data for M, HS and mineral ternary systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.