Abstract

We consider realistic, multi-parameter error models and investigate the performance of the surface code for three possible fault-tolerant superconducting quantum computer architectures. We map amplitude and phase damping to a diagonal Pauli "depolarization" channel via the Pauli twirl approximation, and obtain the logical error rate as a function of the qubit T1, T2 and state preparation, gate, and readout errors. A numerical Monte Carlo simulation is performed to obtain the logical error rates and a leading-order analytic formula is derived to estimate their behavior below threshold. Our results suggest that scalable fault-tolerant quantum computation should be possible with existing superconducting devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call