Abstract

We consider realistic, multi-parameter error models and investigate the performance of the surface code for three possible fault-tolerant superconducting quantum computer architectures. We map amplitude and phase damping to a diagonal Pauli "depolarization" channel via the Pauli twirl approximation, and obtain the logical error rate as a function of the qubit T1, T2 and state preparation, gate, and readout errors. A numerical Monte Carlo simulation is performed to obtain the logical error rates and a leading-order analytic formula is derived to estimate their behavior below threshold. Our results suggest that scalable fault-tolerant quantum computation should be possible with existing superconducting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.