Abstract

The cytotoxicity of quartz in the human lung is recognized to be dependent on both the inherent properties of the silica dust and external factors related to the history of the dust and including the presence of surface contamination. In this study, the physical and chemical surface properties of quartz grains in commercial bentonite deposits from the western (South Dakota) and southern (Alabama) USA were investigated. Measured quartz contents of bentonites range from 1.9 to 8.5 wt% with the <10 μm size fraction comprising 6–45% of this total. Trace element contents (Fe–Ti–Al) of quartz grains from any given bentonite are similar, indicating a single origin for the quartz with little if any contamination from other sources. Surface coatings are pervasive on all quartz grains and resist removal by repeated vigorous washings and reaction with HCl. Textural attributes and XPS and EDS analyses of these coatings are consistent with most being montmorillonite and, less frequently, mixtures of montmorillonite and opaline silica. Opaline silica (opal-A and opal-CT) occurs in two texturally distinct generations: an early massive grain-coating event and as later lepispheres. Montmorillonite coating thicknesses range from <1 μm to more than 10 μm thick. Surfaces of plagioclase, K-feldspar, and biotite grains are conspicuously devoid of montmorillonite coatings, but may show sparse distributions of opal-CT lepispheres. HRTEM has not confirmed a topotactic relationship or atomic structural concordance between montmorillonite coatings and underlying quartz grains. Alternatively, a precursor volcanic glass phase that coats the quartz surfaces during volcanic eruption and/or preferential early precipitation of opaline silica on quartz may provide substrates for development of montmorillonite coatings. Estimations of montmorillonite biodurability under pulmonary pH conditions suggest possible prolonged sequestration of respired bentonite quartz grains from contact with lung materials and modified cytotoxic reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call