Abstract

AbstractTo improve the safety of RDX (hexogen), an energetic polymer (HP‐1) was introduced to coat RDX with 2,4,6‐trinitrotoluene (TNT) by combining the solvent–nonsolvent and the aqueous suspension‐melting method. Scanning electron microscope (SEM), transmission electron microscope (TEM), and X‐ray photoelectron spectrometry (XPS) were employed to characterize the samples, and the role of HP‐1 in the coating process was discussed. The impact sensitivity, friction sensitivity, and the thermal stability of unprocessed and coated RDX were investigated, and the explosion heat of samples was also estimated. Results indicate that HP‐1 improves the wetting ability of the liquid coating material on RDX surface and reinforces the connection between RDX and the coating material. By surface coating, the impact and friction sensitivity of RDX decrease obviously; the drop height (H50) is increased from 37.2 to 58.4 cm, and the friction probability is reduced from 92 to 38%. The activation energy (E) and the self‐ignition temperature increase by 10457.38 J⋅mol−1 and 1.8 K, respectively. The explosion heat is reduced merely by 0.93%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.