Abstract

The antioxidant property of cerium oxide nanoparticles has increased their demand as a nanocarrier to improve the delivery and therapeutic efficacy of anticancer drugs. Here, we report the synthesis of alginate-coated ceria nanoformulations (ceria NPs) and characterization using FTIR spectroscopy, Raman microscopy, and X-ray diffraction. The synthesized ceria NPs show negligible inherent in vitro toxicity when tested on a MDA-MB-231 breast cancer cell line at higher particle concentrations. Upon loading these particles with doxorubicin (Dox) and paclitaxel (PTX) drugs, we observe a potential synergistic cytotoxic effect mediated by the drug and the ceria NPs, resulting in the better killing capacity as well as suppression of cell migration against the MDA-MB-231 cell line. Further, to verify the immune-escaping capacity before targeting cancer cells, we coated the drug-loaded ceria NPs with the membrane of MDA-MB-231 cells using an extrusion method. The resultant delivery system exhibited in vitro preferential uptake by the MDA-MB-231 cell line and showed reduced uptake by the murine macrophage cell line (RAW 264.7), assigning its potential application as non-immunogenic personalized therapy in targeting and killing of cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call