Abstract
An atmospheric-pressure plasma jet generated in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}/\hbox{Ar}$ </tex></formula> mixtures by specially designed equipment with two coaxial quartz tubes and double power electrodes has been investigated, and its effect on the cleaning of surface organic contaminations has been studied. The Q–V Lissajous figures are performed to evaluate the power consumed in the discharge and show no great modification in consumed power with the increase in the oxygen flow rate. From the results of the optical emission spectra, remarkably high oxygen radical concentration is obtained at a 1.5 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\%$ </tex></formula> addition of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}$</tex></formula> to Ar and then decreases with the further increase in the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}/\hbox{Ar}$</tex> </formula> mixing ratio. The effect of the surface cleaning by <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}/ \hbox{Ar}$</tex></formula> -based plasma is studied with respect to the changes in the contact angle. An addition of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}$</tex></formula> to Ar decreases the contact angle, and the lowest contact angle is obtained at a 1.5 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\%$</tex></formula> addition of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{O}_{2}$</tex></formula> to Ar. However, further addition of oxygen does not show further improvement in the contact angle. From the results of quadrupole mass-spectrum analysis, we can identify the fragment molecules of CO and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\hbox{H}_{2}\hbox{O}$</tex></formula> in the emitted gases, which are produced by the decomposition of the surface organic contaminations during the cleaning process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.