Abstract

ABSTRACT Surface chlorophyll-a (chl-a) variation in the Southeastern Tropical Indian Ocean (SETIO) shows different patterns in response to the various types of the Indian Ocean Dipole (IOD) events. Thirteen years of remotely sensed surface chl-a data from the Moderate-resolution Imaging Spectroradiometer (MODIS) were used to evaluate interannual surface chl-a variation in the SETIO. During the period of analysis (January 2003-December 2015), there were three canonical positive IOD (pIOD) and four pIOD Modoki events. It is found that the spatial patterns of surface chl-a variation were coherent with the pattern of surface wind anomaly, and the sea surface temperature anomaly (SSTA). During canonical pIOD events, high chl-a concentrations were observed in the vicinity of the Sunda Strait and along the coast of western tip of the Java Island around the Cilacap region. Meanwhile, during pIOD Modoki event, surface chl-a concentration was relatively higher and distributed wider than those observed during canonical pIOD event. The analysis shows that relatively weak upwelling event indicated by a deep isothermal layer depth (ILD) during pIOD Modoki events combined with thin barrier layer thickness (BLT) and deep mixed layer provides a favourable condition for an increase in surface chl-a in the SETIO region. Meanwhile, strong upwelling as indicated by shallow ILD combined with thick BLT and shallow mixed layer prevents surface chl-a to increase during canonical pIOD events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.