Abstract

Fluorescence quenching of carbon nanodots by metal ions has been extensively applied for the determination of oligonucleotides, proteins, small molecules and metal ions. However, the problem of poor selectivity originating from the coordination of surface oxygen-containing groups to many kinds of metal ions has limited the prosperity of carbon nanodots in detection field. Herein, the specific recognition of carbon nanodots to Hg2+ is controlled by rational regulation of the surface structure of carbon nanodots. Passivation of the surface carboxyl and hydroxyl groups plays a decisive role in inhibiting the binding of metal ions with carbon nanodots. Upon the attachment of Hg2+ specific recognition unit, carbon nanodots exhibited a high selectivity to Hg2+. This work facilitates to rationally design the surface structure of carbon nanodots to obtain the desirable selective recognition ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call