Abstract

The chemistry of trimethyl phosphate (TMP) was examined on the (012) crystallographic face of hematite (α-Fe2O3) using temperature-programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), static secondary ion mass spectrometry (SSIMS), and Auger electron spectroscopy (AES). TMP adsorbed at Fe3+ sites on the clean α-Fe2O3(012) surface through lone pair electrons on the P═O oxygen atom. A small portion of adsorbed TMP desorbed without decomposition; however, the majority of adsorbed TMP decomposed on the clean surface in a two-step process. The first step, occurring at or below room temperature, involved displacement of one methoxy group of TMP to form a surface methoxy and adsorbed dimethyl phosphate (DMP). In the second step, adsorbed DMP decomposed above 500 K to a 1:1 ratio of gaseous methanol and formaldehyde leaving phosphate on the surface. The phosphate was stable on the α-Fe2O3(012) surface to 950 K. Identification of these steps was assisted by using the chemistry of methanol on the clean surface. Coadsorption of TMP and water led to a small degree of hydrolysis between these two molecules in the multilayer but no significant changes in the chemistry of TMP molecules adsorbed on the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call