Abstract

(Cr,Al)N protective coatings were deposited using direct current (DC) and high power pulse magnetron sputtering (HPPMS) technology. The chemical analysis of the surface near region of the coatings was performed by means of X‐ray photoelectron spectroscopy (XPS) and was correlated to the deposition parameters and resulting coating morphology. A surface oxidation process was observed by means of angle resolved XPS studies and XPS sputter profiles. Both DC and HPPMS coatings showed a non‐stoichiometric chemical composition with a significant excess of cations (chromium and aluminum) in the bulk structure, leading to a metastable phase. The passivation reaction of the surface near region leads to an anion to metal ratio which goes along with an enrichment of aluminum in the surface near region as a thermodynamically favored composition in equilibrium with the ambient atmosphere. Interestingly, the variation of the pulse duration of the HPPMS process, which led to a change of the peak current, had a strong influence on the resulting composition of the surface near region. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.