Abstract

Ordered mesoporous carbons (OMC) were produced by pyrolysis of hydrocarbons adsorbed in two different silica matrices (MCM-48 and SBA-15), followed by dissolution of the matrix in either hydrofluoric acid or sodium hydroxide. Some carbons were subsequently heat treated at temperatures of up to 1600 °C. The chemistry of the external surface was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). Information on the graphitic order of the surface of the mesopores was obtained from low-pressure nitrogen adsorption data. The external and internal surface of the OMC has a polyaromatic, graphite-like character. This character increases considerably with increasing pyrolysis and/or post-pyrolysis temperature, as expected. According to the XPS and the nitrogen adsorption data, this increase was especially pronounced for temperatures above 1100 °C. In spite of the different pore structures, only small differences in the polyaromatic character were found for OMC synthesised either in a MCM-48 or in a SBA-15 matrix. Differences exist for the non-carbon elements. When hydrofluoric acid is used for dissolution of the silica matrix, organic fluorine compounds are formed. Their concentration is higher when a MCM-48 matrix as opposed to a SBA-15 matrix was used. Dissolution of the silica matrix in sodium hydroxide yielded a less contaminated OMC as compared to dissolution in hydrofluoric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.