Abstract

Conventional Li-S batteries rely on liquid electrolytes based on LiNO3/DOL/DME mixtures that produce a quasistable interface with the lithium anode. Electron pair donor (EPD) solvents, also known as high donor number solvents, provide much higher polysulfide solubility and close-to-ideal sulfur utilization, making them solvents of choice for lean electrolyte Li-S cells. However, their instability to reduction requires incorporation of an ion-conductive membrane that is stable with Li-such as garnet LLZO and also stable with sulfur/polysulfides. We report that even trace amounts of LiOH on a LLTZO surface trigger a complex reaction with sulfur dissolved in typical EPD solvents (i.e., N,N-dimethylacetamide, DMA) to produce a highly resistive impedance layer that quickly grows with time from 1000 to 10,000 Ω cm2 over a few hours, thus impeding Li+ transport across the interface. Decorating the LLZO with protective phosphate groups to produce a modified surface provides a very low charge-transfer resistance of 40 Ω cm2 that is maintained over time and inhibits the reaction of LiOH and dissolved sulfur. Hybrid liquid-solid electrolyte cells constructed on this concept result in a high sulfur utilization of 1400 mAh g-1 which is 85% of theoretical and remains constant over cycling even with conventional, unoptimized carbon/sulfur cathodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call