Abstract

The surface chemistry of gravure printed decor paper and its effect on the adhesion of melamine formaldehyde (MF) coatings were studied. Two industrially printed decor papers with different designs were used for the study. A combination of the attenuated total reflectance Fourier transform Infrared (ATR FT-IR) and FT-IR spectroscopy techniques were employed to determine the effect of the gravure printing ink on the printed paper surface chemistry. Then, the influence of the surface chemistry on the adhesion of MF coatings was characterized according to the abrasion resistance test. The ATR IR results suggested that the printing ink components had a noticeable effect on the surface characteristics of the printed decor paper. In addition, it was indicated that the use of an organosilane adhesion promoter in the gravure ink formulation could significantly affect the adhesion strength of the MF coatings through the formation of ring siloxane structures. It seemed that siloxane bridges formed between the molecules of ink binder and UF resin could enhance the adhesion strength of subsequent MF coatings and could reveal better Taber abrasion resistance performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.