Abstract

Hydride vapor phase epitaxy (HVPE) is a promising technology that can aid in the cost reduction of III-V materials and devices manufacturing, particularly high-efficiency solar cells for space and terrestrial applications. However, recent demonstrations of ultrafast growth rates (∼500 μm/h) via uncracked hydrides are not well described by present models for the growth. Therefore, it is necessary to understand the kinetics of the growth process and its coupling with transport phenomena, so as to enable fast and uniform epitaxial growth. In this work, we derive a kinetic model using experimental data and integrate it into a computational fluid dynamics simulation of an HVPE growth reactor. We also modify an existing hydride cracking model that we validate against numerical simulations and experimental data. We show that the developed growth model and the improved cracking model are able to reproduce experimental growth measurements of GaAs in an existing HVPE system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.