Abstract
From size-dependent luminescence to localized surface plasmon resonances, the optical properties that emerge from common materials with nanoscale dimensions have been revolutionary. As nanomaterials get smaller, they approach molecular electronic structures, and this transition from bulk to molecular electronic propertiesis a subject of far-reaching impact. One class of nanomaterials that exhibit particularly interesting optoelectronic features at this size transition are coinage metal (i.e., group 11 elements copper, silver, and gold) nanoparticles with core diameters between approximately 1 to 3 nm (∼25-200 atoms). Coinage metal nanoparticles can exhibit red or near-infrared photoluminescence features that are not seen in either their molecular or larger nanoscale counterparts. This emission has been exploited both as a probe of electronic behavior at the nanoscale as well as in critical applications such as biological imaging and chemical sensing. Interestingly, it has been demonstrated that theirphotoluminescence figures of merit such as emission quantum yield, energy, and lifetimeare largely independent of particle diameter. Instead, emission from particles at this size range depends heavily on the particle surface chemistry, which includes both its metallic composition and the capping ligand architecture. The strong influence of surface chemistry on these emergent optoelectronic phenomena has powerful implications for both the study and use of these particles, primarily due to the theoretically limitlesspossible surface ligand architectures and metallic compositions. In this Account, we highlight recent work that studies and uses surface chemistry-mediated photoluminescence from coinage metal nanoparticles. Specifically, we emphasize the distinct, as well as synergistic, roles of the nanoparticle capping ligand and the nanoparticle corefor controlling and/or enhancing theirnear-infrared photoluminescence. We then discuss the implications of surface chemistry-mediated photoluminescence as it relates to downstream applications such as energy transfer, sensing, and biological imaging. We conclude by discussing current challenges that remain in the field, including opportunities to develop new particle synthetic routes, analytical tools, and physical frameworks with which to understand small nanoparticle emission. Taken together, we anticipate that these materials will be foundational both in understanding the unique transition from molecular to bulk electronic structures and in the development of nanomaterials that leverage this transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.