Abstract
X-ray photoelectron spectroscopy (XPS) as well as scanning and transmission electron microscopy (SEM/TEM) analysis was carried out on four Ti-6Al-4V powders used in electron beam powder-bed fusion (PBF-EB) production environments: virgin low oxygen (0.080 wt% O), reused medium oxygen (0.140 wt% O), reused high oxygen (0.186 wt% O), and virgin high oxygen (0.180 wt% O). The two objectives of this comparative analyses were to (1) investigate high oxygen containing Grade 23 Ti-6Al-4V powders which were further oxidized as a function of reuse and (2) comparing the two virgin Grade 23 and Grade 5 powders of similar oxygen content. The microstructure of the low oxygen virgin Grade 23 powder was consistent with martensitic α′ microstructure, whereas the reused powder displayed tempered α/β Widmänstatten microstructure. XPS revealed a decrease in TiO2 at the surface of the reused powders with an increase in Al2O3. This trend is energetically favorable at the temperatures and pressures in PBF-EB machines, and it is consistent with the thermodynamics of Al2O3 vs. TiO2 reactions. An unexpected amount of nitrogen was measured on the titanium powder, with a general increase in nitride on the surface of the particles as a function of reuse in the Grade 23 powder.11This work is an official contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.