Abstract

A key limitation for the use of aluminum alloys in multi-material structural components is effective surface cleaning and texturing techniques to improve the quality of structural joints. In this study, the surface and sub-surface chemistries are investigated for a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser. Surfaces of AA 5128 aluminum alloy were treated using a two-beam laser interference setup, enabling the structuring of the surface at length scales much less than that of the laser beam. Periodic and patterned surface structures were created by the interference power profile through ablation of deposits and debris and melting and re-solidification of the near-surface region during laser-treatment. Chemical changes to the Al alloy surface induced by laser treatment were examined in detail in this study using both x-ray photoelectron spectroscopy (XPS) and scanning Auger microanalysis (SAM) as a function of number of interfering laser shots. XPS surface analysis indicates that this laser technique is effective at cleaning aluminum surfaces. Moreover, SAM data indicated that there is a compositional-induced variation of Mg due to laser-interference as Mg-rich areas were found in periodic interference-structured ridges. Notice: The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.