Abstract

Nanoparticle (NP) drug delivery systems have been successfully designed and implemented to orally deliver siRNAs for inflammatory disorders. However, the influence of surface charge on orally administered siRNA nanocarriers has not been investigated. In this study, we prepared structurally related poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG5K-b-PLGA10K) NPs with the assistance of a synthesized lipid featuring surface amine groups for subsequent charge tuning. NPs were prepared by a double emulsion method, and their surface charge could be tuned and controlled by a succinylation reaction to yield NPs with different surface charges, while maintaining their size and composition. The prepared NPs were termed as aminated NPs (ANPs), plain NPs (PNPs), or carboxylated NPs (CNPs) based on their surface charge. All NPs exhibited the desired structural stability and siRNA integrity after enzymatic degradation. In vivo studies showed that ANPs significantly accumulated in inflamed colons, and they were successful in decreasing TNF-α secretion and mRNA expression levels while maintaining colonic histology in a murine model of acute ulcerative colitis (UC). This study described a methodology to modify the surface charge of siRNA-encapsulating polymeric NPs and highlighted the influence of surface charge on oral delivery of siRNA for localized inflammatory disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call