Abstract

We report on asymmetric two-beam coupling and the ways of controlling it in liquid crystals cells with photoconducting polymer layers. The cells had one of the substrates covered with a photoconductive polymer layer, namely PVK, photosensitised with C<sub>60</sub> to respond to visible light. Efficient gain was measured in 30 micron thick cells with two incident beams having the same intensity. We present a model of two-beam coupling gain based on the build-up and discharge of surface charge screening layers, spatially modulated due to the photoconductivity of doped PVK. The simulation of electric field distribution inside a liquid crystal cell for different two-beam coupling grating spacing showed different penetration of field into the liquid crystal bulk. The characteristics of dynamics, magnitude of two-beam coupling and the efficiency of diffraction were determined for different values of applied DC field, cell configuration and liquid crystals. We found that the direction of energy flow was determined just by the cell tilt and not by the DC field bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.