Abstract

Interfacial phenomena in dielectric-ferroelectric composites have significant potential for promoting novel properties. Here, we utilize a dynamic Landau–Ginzburg–Devonshire methodology to elucidate the influence of an electrostatic self-interaction on the polarization behavior of spherical ferroelectric nanoparticles embedded in a dielectric matrix. By varying the particle volume and the dielectric permittivity of the surrounding medium, phase boundaries between states with polarization patterns exhibiting monodomains, structural, and electrical polydomains, and vortex-like topologies are observed in isolated particles. Under an applied bias, incomplete screening of surface charges leads to a size-dependent, monodomain-to-vortex topological phase transition that suppresses macroscopic polarization. The vortex topology observed in the polarization-suppressed region of the hysteresis originates from the minimization of surface charges at the particle-matrix interface, resulting in linear behavior and double hysteresis loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.