Abstract

The strict stacking of plant photosynthetic membranes into granal structures plays a vital role in energy conversion. The molecular forces that lead to grana stacking, however, are poorly understood. Here we evaluate the interplay between repulsive electrostatic (Fel) and attractive van der Waals (FvdWaals) forces in grana stacking. In contrast to previous reports, we find that the physicochemical balance between attractive and repulsive forces fully explains grana stacking. Extending the force balance analysis to lateral interactions within the oxygen-evolving photosystem II (PSII)-light harvesting complex II (LHCII) supercomplex reveals that supercomplex stability is very sensitive to Fel changes. Fel is highly dynamic, increasing up to 1.7-fold on addition of negative charges by phosphorylation of grana-hosted proteins. We show that this leads to specific destabilization of the supercomplex, and that changes in Fel have contrasting effects on vertical stacking and lateral intramembrane organization. This enables discrete biological control of these central structural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.