Abstract
The surface composition and free energy properties of two grades of amphiphilic and semicrystalline triblock copolymers consisting of a poly(dimethylsiloxane) (PDMS) midblock (Mw ∼ 2300) coupled to poly(e-caprolactone) (PCL) end blocks having differing molecular weights (Mw ∼ 2000, sample P3, and Mw ∼ 3000, sample P2) and homopolymer PCL (Mw ∼ 40 000) were investigated by Fourier transform infrared, spectroscopy, electron spectroscopy for chemical analysis (ESCA), and contact angle measurements using critical surface tension, one-liquid and two-liquid methods. ESCA showed that the molar concentration of PDMS increased from 36.5% in the bulk up to 70.2% in the surface for sample P2 and from 46.3% in the bulk up to 79.2% in the surface for sample P3 in high vacuum. This indicates that the lower surface energy PDMS microdomains were segregated in the surface region to minimize the surface energy of the copolymer. The longer the PCL block, the higher the phase separation. One-liquid contact angle results were...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.