Abstract

In this work, we have applied the catalytic reduction of triethylsilane and phenylsilane to hydrogenate conical-tip carbon electrodes (~1.9 μm (standard deviation 0.97 μm; N = 10) tip diameter and ~8.6 μm (standard deviation 0.58 μm; N = 10) axial length) to achieve a H-terminated carbon surface. In addition to forming a hydrophobic sp3-carbon rich surface, these two silane reduction reactions yielded siloxane dendrimers with a bulky side chain and aromatic rings, respectively. In this way, high-molecular weight, amphiphilic molecules present in a biological matrix are deterred from adsorbing on the carbon electrodes, which would otherwise lead to electrode fouling that often compromises electrochemical detection of targeted analytes. This work is focussed on the X-ray photoelectron spectroscopic study and Raman spectroscopic examination of the surface characteristics of the hydrogenated conical-tip carbon electrodes to evaluate the effectiveness of the hydrogenation procedure and to confirm the composition of the electrode surface. The results obtained then aided in validating the type of carbon formed on the hydrogenated carbon electrodes. Additionally, electrochemistry of several redox markers ([Ru(NH3)6]3+, [Fe(CN)6]3− and anthraquinone 2,4-disulfonic acid) were also used to evaluate the surface characteristics of these hydrogenated carbon electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.