Abstract

The effect of the surface characteristics of Ni catalyst films on the growth behavior of multi-walled carbon nanotubes (MWCNTs) were investigated using Ni catalyst films prepared by different physical vapor deposition methods, electron-beam evaporation and sputtering. The growth behavior of MWCNTs was dependent upon the surface roughness of the Ni films. After a pretreatment process with NH 3, the root mean squares of surface roughness of e-beam evaporated and sputtered Ni catalyst films increased to 16.6 and 3.2 nm, respectively. Curled-MWCNTs and carbon-encapsulated Ni nanoparticles were formed on the Ni film deposited by e-beam evaporation while vertically aligned-MWCNTs were grown on the sputter-deposited film. In addition, the surface roughness of the Ni films affected the field emission properties of the MWCNTs. This was considered to originate from the specific growth behavior of the MWCNTs which was primarily caused by the initial surface roughness of the Ni films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call