Abstract

Electrochemical machining (ECM) process has great potential on account of the versatility of its applications. ECM is being widely used in the manufacturing industry because hard metals can be machined regardless of the mechanical property of a work piece. Titanium is broadly used in a number of fields such as aerospace, power generation, automotive, chemical including petrochemical, and sporting goods. Apart from these applications, it has tremendous prospective in dental, medical industries, and biomedical engineering. The biological performance of titanium implant depends on their surface topography and form accuracy that includes various surface parameters. ECM is one of the alternative machining processes that can be applied to the machining of titanium implant for biomedical applications. The aim of this paper is to present experimental result of surface characteristics obtained on titanium samples, utilizing developed cross-flow electrolyte supply system in electrochemical machining. It is observed that electrolyte flow velocity and voltage between electrodes are some of the influencing parameters, which affect the surface characteristics. Titanium oxide layer has been generated on the machined surface, which facilitates the improvement of the corrosion and chemical resistance of titanium implant. Effects of electrolyte flow velocity and voltage during electrochemical machining process for generation of various surface characteristics have been successfully studied through experimentation. In the present work, the obtained surface roughness values on the titanium sample machined by ECM were in the range of 2.4 to 2.93 μm, which is within acceptable value for the implants. Effects of electrolyte flow velocity and voltage on the material removal rate and machining accuracy in the form of overcut are also presented in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call