Abstract
Municipal sewage sludge (MSS) and hazelnut shell were used for co-pyrolysis by chemical activation with ZnCl2. The surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis were analyzed by surface analyzer and BCR sequential extraction. When raw materials with ZnCl2 (3mol/L) were co-pyrolyzed at 500°C for 90min, specific surface area of the bio-char is 598.73m2/g, and iodine absorption number is 607.85mg/g. For microcosmic surface of the bio-char, the ratio of micropore area is stabilized from 0.74 to 0.80 of the total specific surface area, and hazelnut shell is effective to generate microporous construction. For the migration and transformation behavior of heavy metals, pyrolysis promoted mobile fraction (F1 and F2) to stable fraction (F3 and F4) with increasing pyrolysis temperature. The potential ecological risk of heavy metals transforms from considerable risk to low risk after pyrolysis at 500°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.