Abstract

To evaluate and compare the shear bond strength (SBS) of composite veneering material to polyetherketoneketone (PEKK), polyetheretherketone (PEEK), zirconia (YZ), and nickel-chromium alloy (NiCr) substructure restorative materials. Forty samples (12 × 2 mm) were prepared from four materials: PEKK, PEEK, zirconia, and NiCr alloy (n = 10). The Vickers hardness was evaluated before preparing the surface for bonding by shot-blasting using 110 μm Al2 O3 particles. The surface roughness (Ra) of each sample was determined using a noncontact optical profilometer. The veneering resin was bonded onto each sample following primer application. The prepared samples were then subjected to an SBS test using a universal testing machine at 0.5 mm/min crosshead speed. Failure modes and surface topography following debonding were assessed. The data were statistically analyzed using ANOVA and Tukey'spost-hoccomparison test (p < 0.05). RESULTS: The highest and lowest mean surface roughness was observed in PEEK (3.45 ±0.13 μm) and NiCr (1.87 ±0.07 μm) materials, respectively. A significant difference in roughness values was observed between the materials except for NiCr and YZ (p = 0.547). Concerning SBS, PEEK and NiCr exhibited the highest (16.23 ±0.96 MPa) and lowest (10.1 ±0.63 MPa) values. The mean difference in SBS indicated a statistically significant difference between the material groups (p < 0.01). PEKK materials demonstrated significantly lower SBS than PEEK and significantly higher SBS values than conventional zirconia and alloy materials. A positive and significant correlation between mean roughness and SBS was observed, but the causality could be either intrinsic to the material or the roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.