Abstract

The aberration-corrected scanning transmission electron microscope can provide information on nanostructures with sub-Angström image resolution. The relatively intuitive interpretation of high-angle annular dark-field (HAADF) imaging technique makes it a popular tool to image a variety of samples and finds broad applications to characterizing nanostructures, especially when combined with electron energy-loss spectroscopy and X-ray energy-dispersive spectroscopy techniques. To quantitatively interpret HAADF images, however, requires full understanding of the various types of signals that contribute to the HAADF image contrast. We have observed significant intensity enhancement in HAADF images, and large expansion of lattice spacings, of surface atoms of atomically flat ZnO surfaces. The surface-resonance channeling effect, one of the electron-beam channeling phenomena in crystalline nanostructures, was invoked to explain the observed image intensity enhancement. A better understanding of the effect of electron beam channeling along surfaces or interfaces on HAADF image contrast may have implications for quantifying HAADF images and may provide new routes to utilize the channeling phenomenon to study surface structures with sub-Angström spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.