Abstract

We employ detailed numerical simulations to understand the physical mechanism underlying the surface breakup of a non-turbulent liquid jet injected transversely into a high pressure gaseous crossflow under isothermal conditions. The numerical observations reveal the existence of shear instability on the jet periphery as the primary destabilization mechanism. The temporal growth of such azimuthal instabilities leads to the formation of interface corrugations, which are eventually sheared off of the jet surface as sheet-like structures. The sheets next undergo disintegration into ligaments and drops during the surface breakup process. The proposed instability mechanism is inherently an inviscid mechanism, contrary to the previously suggested mechanism of surface breakup (known as “boundary layer stripping”), which is relied on a viscous interpretation. The numerically obtained length and time scales of the shear instabilities on the jet laterals are compared with the results of Behzad et al. (2015) on temporal linear stability analyses of a jet in crossflow at near the nozzle. The stability characteristics of the most amplified modes (i.e., the wavenumber and the corresponding growth rate) obtained from the numerical simulations and the stability analyses are in good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call