Abstract
BackgroundTobacco smoke is a toxic gas-phase cocktail consisting of a broad range of organics, and free radical intermediates. The formation of smoke from a burning cigarette depends on a series of mechanisms, including generation of products by pyrolysis and combustion, aerosol formation, and physical mass transfer processes.MethodsThe current study simulates the deposition of particulate matter on the human lung surface by trapping the tobacco smoke particulates in situ on silica gel. To mimic this phenomenon, the cigarette was smoked directly on siliga gel. The surface morphology of smoke condensate trapped on silica gel, and pure silica gel (control) was investigated using a scanning electron microscope (SEM). Electron paramagnetic resonance (EPR) was used to explore the presence of free radicals on the particulate matter trapped on silica. Standard procedures for cigarette smoking (ISO 3402:1999) were adopted. The char yields of tobacco cigarette in the temperature range 200–700 °C was also investigated in an inert atmosphere using a quartz reactor.ResultsSEM images showed the surface morphology of pure silica gel was smooth while silica gel on which cigarette smoke was smoked on contained particulates of various sizes. Generally, the particulate size of cigarette smoke adsorbed on silica was found to be 2.47 ± 0.0043 µm (~PM2.5). Electron paramagnetic resonance (EPR) results showed a g-value of 2.0037 typically that of a carbon-centred radical.ConclusionsIt is therefore evident from this investigation that cigarette smoke contains surface bound radicals considered harmful to the health of cigarette smokers. The particulate size of tobacco smoke (PM2.5) can impact severely on the lives of the cigarette smoking community because of its near ultrafine nature. This significantly small particulate size in cigarette smoke can be inhaled deeper into the lungs thus causing serious cell injury and possible tumour growth in addition to other grave diseases.Graphical abstractCigarette smoking and analytical techniques employed in this study
Highlights
Tobacco smoke is a toxic gas-phase cocktail consisting of a broad range of organics, and free radical intermediates
SM1 was ~50% while that of ES1 in the same temperature range was ~32%. This is consistent with other results on tobacco pyrolysis which indicate high mass loss of tobacco pyrolysis occurs in this temperature region [26]
At 500 °C most molecular organics will have been evolved so that any further increase in temperature leads to a sharp decrease in the pyrolysis by-products
Summary
Tobacco smoke is a toxic gas-phase cocktail consisting of a broad range of organics, and free radical intermediates. Whereas previous studies by Church and Pryor [2] explored tobacco free radicals using spin trapping techniques and radical extracts from Cambridge filter pad using various solvents, this study reports surface immobilization of cigarette smoke radicals in situ on silica gel. This is not to say our study is in contradiction of the work done by Church and Pryor [2], and Maskos et al [7] but rather underscore the existence of tobacco free radicals in tobacco particulates in a way that could mimic actual cigarette smoking
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.