Abstract

A novel series of nonionic bolaamphiphiles—polyurethane amphiphilic block copolymers were synthesized by addition polymerization. Their chemical structures were characterized using FTIR and 1H-NMR spectra. The critical micelle concentration was determined by surface tensiometer and UV-vis absorption spectra. The surface behaviors of copolymers at air/water interface were also investigated including the effects of concentration, molecular structure, electrolytes, and rest time. The results show that these bolaform polyurethane amphiphilic block copolymers exhibited excellent surface activity: PU34 could attain surface tension as low as 35.6 mN m−1. According to the images of Transmission Electron Microscopy (TEM), the copolymers could self-assemble star-like aggregates comprised of hydrophobic block PPO surrounded by hydrophilic block PEO. Moreover, variation of concentration, the weight fraction of the hydrophilic block (fphil), and the molecular weight of the copolymers could lead to the transformation of micelle (or premicelle) morphology. This provides a new and simple way to obtain nanoparticles with control over structure on the nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.