Abstract
This paper presents a case study of C-band backscatter observations of snow during a Chinook event. A surface-based C-band polarimetric data set collected in February 2006 is used to contrast the polarimetric response to sampled conditions of bare frozen ground, cold snow-covered ground, and snow during a Chinook event. Chinook activity is inherently spatially and temporally variable across the region in winter and produces considerable spatial variability of snow-cover physical properties associated with snow-water-equivalent (SWE) estimates. A temporal analysis of polarimetric backscatter sensed during a Chinook-induced ablation event on February 27, 2006 is used to describe the associated changes in snow conditions and scattering mechanisms. Analysis reveals that the polarimetric surface-based C-band scatterometer data respond to changes in snow parameters associated with the specific ground and snow conditions and to the temporal Chinook ablation event. Use of the copolarizations, cross-polarization, depolarization ratio, copolarization ratio, complex copolarization correlation coefficient, and the copolarized phase difference information show promise in describing changes in snow physical parameters, differing ground and snow conditions, and transitional ablation events, based on differing scattering mechanisms. This paper infers that an increase in volume scattering and fluctuations in surface scattering during the Chinook ablation event may be associated with specific physical changes such as density, crystal structure, and permittivity caused by wind speed. This paper has implications for remotely sensed estimations of snow-covered area (SCA) and SWE. Association of SCA and SWE with backscatter coefficients is not explicit in this paper; however, changes in SWE and snow properties are inferentially linked to changes in backscatter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.