Abstract

Template is frequently studied as a structure-directing agent to tune the nanomorphology of photocatalysts. However, the influences of template on the polymerization of precursors and compositions of the resulting samples are rarely considered. Herein, a biomass carbon-modified graphitic carbon nitride (CCNx) with a thin-layer morphology is synthesized via one-pot surface-assisted polymerization of melamine precursor on organic yeast. The formation of the hydrogen bond between melamine and yeast induces a strong interfacial confinement, giving rise to small-sized CCNx. In addition, the carbon materials derived from yeast dramatically broaden n → π* visible light harvesting, improve electron delocalization, and greatly enhance charge carrier separation. The optimized CCNx presents a much higher photocatalytic hydrogen production rate of 2704 μmol g-1h−1 under visible light irradiation (λ ≥ 420 nm), which is nearly 11-fold that of its pristine counterpart. This work realizes the synergistic effect between morphology tunning and composition tailoring by using biomass template, which shows a great potential in developing efficient metal-free photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call