Abstract

The adsorption kinetics of Ag nanoparticles on a silica surface modified with poly-l-lysine (PLL) have been measured in situ by following the interfacial optical absorbance at 405 nm by evanescent wave cavity ring-down spectroscopy (EW-CRDS). Sensitivity toward nanoparticle detection is enhanced due to the plasmon resonance of the Ag nanoparticles. The redox-dissolution kinetics of the immobilized nanoparticles have been investigated by two distinct approaches. First, IrCl62− was generated electrochemically from IrCl63− by a chronoamperometric potential step in a thin-layer cell configuration formed between the silica surface and a Pt macroelectrode. The oxidative dissolution kinetics were obtained by monitoring the EW-CRDS signal as the nanoparticles dissolved. The reaction kinetics were extracted by complementary finite element modeling of diffusional and reaction processes. The second method of dissolution investigated involved the injection of IrCl62−(aq) directly at the surface by means of a microcap...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.