Abstract
The engineering and control of systems of monodispersed polyhedral nanoparticles are important for the development of devices based on size and shape-dependent properties. This includes a detailed understanding of how these designer nanoparticles are formed, and how they evolve and change over time. Although an experimental strategy or atom based theory may be used to observe different stages of this process, it is highly desirable to model the entire process, based on a limited set of physical or chemical parameters. Here we derive a kinetic model of nanoparticle shape evolution as a function of time, using specific concepts relating to surface diffusion, rate of step growth, and particularly surface site availability, referred to as the surface area limited (SAL) theory of growth and nanomorphology. This model is then applied to examples, including the axial growth of an arbitrary nanorod and the anisotropic growth of a nanogold truncated octahedron, restricted to either the AE111ae or AE100ae direction, each driven by the coarsening mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.