Abstract
This paper reports the synthesis, characterization and adsorption behavior of mesoporous materials obtained by hydrothermal method using nonyltrimethyl ammoniumbromide (NTMAB) template without any functionalization. The template of the as synthesized materials was removed by calcination. The effective elimination of template was confirmed by FT-IR spectra. It is observed that temperature, time, calcination, filtration and pH were the different parameters that affect the surface of the mesoporous materials. Increase in temperature, time and calcination affected significantly the distribution of pore size and surface area. Relatively high surface area (779.83 m 2/g) and large pore size (2.28 nm) were obtained at optimum synthesis conditions. Dialysis membrane filtration was found to be successful for first time. Langmuir adsorption of metal ions, such as Pb 2+, Cu 2+ and Ni 2+ was discussed and the experimental results reveal that the adsorption is physical phenomenon and maximum adsorption was obtained in optimized experimental conditions. Under the same experimental conditions, Pb 2+ (9.85 mg/g) showed enhanced adsorption when compared to Cu 2+ (3.85 mg/g) and Ni 2+ (2.58 mg/g) due to larger ionic radius and higher electro-negativity. A comparative study of adsorption capacity of as synthesized mesoporous materials with commercially available adsorbents showed that the order of adsorption is as follows; ZC-9 > PAC > zeolite-Y > beta zeolite. Hence, herein reported mesoporous materials hold great potential to remove heavy metal ions from aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.