Abstract
AbstractThe total specific surface area (TSSA) and smectitic layer charge (Qs) calculated from the structural formulae and unit-cell dimensions of 12 pure smectite samples were used as a reference in the design and evaluation of TSSA and Qs measurement techniques based on cation exchange capacity (CEC), H2O retention at 47% RH, and ethylene glycol monoethyl ether (EGME) retention. A thermogravimetric analysis-mass spectrometry (TGA-MS) technique was used to study the release of H2O from smectite on heating, and to introduce a correction for H2O remaining in the smectite after heating to 110°C, because the sample weight at this temperature has been used routinely as a reference in CEC and EGME sorption measurements. A temperature of 200°C was found to be the optimum reference for such measurements.A good agreement between Qs from the structural formula and from CEC was obtained when this correction was applied. The TSSA of smectite was measured with similar accuracy (mean error of ±5–7%) by three techniques: (1) using mean H2O coverage; (2) using mean EGME coverage; and (3) using a combination of H2O coverage and CEC. A reduction of the mean error from 5–7% to 4% can be obtained by averaging these measurements, and a further reduction to 3% by introducing corrections for the dependence of H2O and EGME coverage on layer charge. The study demonstrates that Ca2+-smectite samples at 47% RH have H2O contents corresponding to 88–107% of the theoretical mass of a monolayer and offers an explanation of this variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.