Abstract
Abstract. Geospatial data acquisition of terrains produces huge, noisy and scattered point clouds. An efficient use of the acquired data requires structured and compact data representations. Working directly in a point cloud is often not appealing. To face this challenge, approximation with tensor product B-spline surfaces is attractive. It reduces the point cloud description to relatively few coefficients compared to the volume of the original point cloud. However, this representation lacks the ability to adapt the resolution of the shape to local variations in the point cloud. The result is frequently that noise is approximated and that surfaces have unwanted oscillations.Locally Refined (LR) B-spline surfaces were introduced to face this challenge and provide a tool for approximating Geographic Information System point clouds. In our LR B-spline based approximation algorithm, iterative least-squares approximation is combined with a Multilevel B-spline Approximation to reduce memory consumption. We apply the approach to data sets from coastal regions in Norway and the Netherlands, and compare the obtained approximation with a raster method. We further highlight the potential of LR B-spline volumes for spatio-temporal visualisation of deformation patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.