Abstract
BackgroundMany parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms.ResultsWe have developed Reptile , a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites.ConclusionSystemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at .
Highlights
IntroductionEukaryotes as well as bacteria, possess surface antigens with amino acid repeats
Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats
Repetitive amino acid subsequences in polypeptides are of interest regarding the function as well as the evolution of proteins
Summary
Eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Repetitive amino acid subsequences in polypeptides are of interest regarding the function as well as the evolution of proteins. At least 14% of all proteins contain internal repeats, the proportion being somewhat lower in prokaryote and higher in eukaryote proteomes [1]. Apart from counting repetitive occurrences of amino acid subsequences in polypeptides, repeats can be detected by self-alignment or – if they are evenly distributed – by Fourier transform
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.