Abstract

During the last two-three decades the importance of computer simulations based on numerical full-wave solutions of Maxwell's has continuously increased in electrical engineering. Software products based on integral equation methods have an unquestionable importance in the frequency domain electromagnetic analysis and design of open-region problems. This paper deals with the surface and volume integral equation methods for finding time-harmonic solutions of Maxwell's equations. First a review of classical integral equation representations and formulations is given. Thereafter we briefly overview the mathematical background of integral operators and equations and their discretization with the method of moments. The main focus is on advanced techniques that would enable accurate, stable, and scalable solutions on a wide range of material parameters, frequencies and applications. Finally, future perspectives of the integral equation methods for solving Maxwell's equations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call