Abstract
The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life? These planets orbit very close to the host star and are most susceptible to the UV radiation emitted by the intense and frequent flares of Trappist-1. Here, we calculate the UV spectra (100-450 nm) of a superflare observed on Trappist-1 with the K2 mission. We couple radiative transfer models to this spectra to estimate the UV surface flux on planets in the habitable zone of Trappist-1 (planets e, f, and g), assuming atmospheric scenarios based on a prebiotic and an oxygenic atmosphere. We quantify the impact of the UV radiation on living organisms on the surface and on a hypothetical planet ocean. Finally, we find that for non-oxygenic planets, UV-resistant life-forms would survive on the surface of planets f and g. Nevertheless, more fragile organisms (i.e., Escherichia coli) could be protected from the hazardous UV effects at ocean depths greater than 8 m. If the planets have an ozone layer, any life-forms studied here would survive in the habitable zone planets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.