Abstract

In this paper, the axisymmetric buckling analysis of circular single-layered graphene sheets is studied by decoupling the basic constitutive equations based on the nonlocal theory of Eringen. The influences of temperature change, surface parameters and nonlocality on the buckling response of single-layered graphene sheet are investigated considering size-dependent material properties. Numerical solutions for buckling loads are computed using differential quadrature method (DQM). For comparison purpose, Galerkin method is also used to solve the nonlocal governing differential equation. DQM results are successfully verified with those of Galerkin method. The comparison of present results with the available molecular dynamics simulation data from the literature shows that the present formulation with appropriate values of surface and nonlocal parameters provides more accurate results than those obtained by the classical plate model. The results of present work can be used as benchmarks to evaluate future analyses of the circular nanoplates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call