Abstract

In side-chain liquid-crystal (SCLC) polymer systems, the liquid crystalline (LC) mesogenic groups preferentially orient normal to the substrate plane due to the excluded volume effect (homeotropic alignment). Photoresponsive azobenzene (Az) mesogens have a transition moment parallel to the molecular long axis. Light irradiation for photoreactions is generally applied perpendicular to the film surface. Therefore, a homeotropic orientation inhibits efficient photoreactions and photoalignments in Az SCLC polymer systems. This review focuses on new approaches to induce a random planar orientation in Az SCLC polymer systems by interface and surface molecular design. The mesogens in a high-density SCLC polymer brush formed by surface-initiated living radical polymerization adopt a random planar orientation. In the film of an SCLC block copolymer with an amorphous block, a random planar orientation is induced via surface segregation of either of the blocks. The random planar orientations of SCLC polymer systems are thermally stable and offer efficient in-plane photoalignment and photoswitching with hierarchical LC molecular architectures, forming, e.g., microphase-separated (MPS) SCLC block copolymers and layered polymer LC systems. These surface and interface molecular designs are expected to provide new concepts and possibilities for LC polymer devices. The liquid crystalline (LC) rod-like mesogens preferentially orient normal to the substrate plane due to the excluded volume effect (homeotropic alignment) in side-chain liquid-crystal (SCLC) polymers free-standing films. For in-plane alignment, a homeotropic orientation is unsuitable because the mesogens are in a direction opposite to the in-plane directions. This review focuses on new approaches to induce a random planar orientation in SCLC polymer systems by interface and surface molecular design utilizing a high-density polymer brush structure and surface segregation structures of block copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call